Tag Archives: education

Primer: The Scientific Method

These posts, tagged “Primer,” are posted for two reasons: 1). to help me get better at teaching non-scientists about science-related topics; and 2). to help non-scientists learn more about things they otherwise would not. So, while I realize most people won’t read these, I’m going to write them anyway, partially for my own benefit, but mostly for yours.

There are quite a few things that go flying by in the news that concern me (and I have posted about them here…at…length…), but one that really gets to me is public misunderstanding of Science.  As in, capital “S” Science.  Not really the fact that many people don’t know certain scientific facts, or don’t really understand how many things work, but more that they do not understand how science is done and what it really means.  I will seek to clear up some of that here.

First, however, what does Dictionary.com tell us?

Science - noun

1. a branch of knowledge or study dealing with a body of facts or truths systematically arranged and showing the operation of general laws: the mathematical sciences.
2. systematic knowledge of the physical or material world gained through observation and experimentation.
3. any of the branches of natural or physical science.
4. systematized knowledge in general.
5. knowledge, as of facts or principles; knowledge gained by systematic study.

Now, this definition seems to center upon the natural/physical sciences, however many, if not all, of the principles that “science” adheres to apply to the social sciences (e.g. sociology, psychology, etc.) and to many other degrees.  However, I will focus on what I know best.

“Systematically” is the word sprinkled about in the definition above, and rightfully so.  “Systematically” refers to how science is conducted, generally through what we refer to as the scientific method.  The Wikipedia article, as usual, is a good start for further information on this particular subject, but basically, here’s how it works:

  1. Formulate a hypothesis
  2. Test the hypothesis through experimentation and observation
  3. Use collected data to confirm or refute the initial hypothesis
  4. Form a new hypothesis based on what was learned in steps 1-3

A “hypothesis,” put simply, is an educated guess toward a question you have.  Many times, especially when you’re first learning the scientific method, you may phrase it in the form of an “If/Then” statement.  For example:

If I drop this rock, then it will fall

The “If” portion of the above statement represents the “Independent Variable,” while the “Then” portion represents the “Dependent Variable.”  Effectively, the Dependent Variable is what you’re measuring and the Independent Variable is what you’re changing in the system.  In this particular case, if you drop the rock, does it fall or not?  You can measure whether or not it falls.  If you don’t drop the rock, does it still fall?  And so on.  It is called the Dependent Variable because it “depends” on what you do in the Independent Variable.

You are generally allowed to have multiple Independent Variables in a given hypothesis (or series of hypotheses), but the Dependent Variable cannot change. What would happen if I dropped a rock on Earth and dropped another one on Mercury?  My results wouldn’t be comparable, because I changed too many things.  I could change the size of the rock, but if I’m measuring the rate at which the rock falls to the ground, I need to make sure the force of gravity is held constant.

Obviously, this is a very simple example.  If one were to ask something a bit more complicated, you could ask the following:

If Tylenol is administered to people with headaches, then they will experience pain relief.

The question above seems simple enough, right?  I could just give Tylenol to a bunch of people with headaches and see if we get an effect.  Then I would know if my hypothesis was correct or if it wasn’t.  But what would happen if I grabbed people prone to migraine headaches were participating in my study?  Or alcoholics (that don’t break down Tylenol all that well)?  The data I would receive would be flawed, as the Tylenol probably wouldn’t do anything to people with migraines and it may actually make alcoholics feel worse.  My hypothesis would be proven wrong.

Here is where we really need to consider “Controls.”  These are a separate series of experiments that you use to compare your experimental results to.  You may choose to set this up in your experiment in a variety of ways, but one possibility is to give those with migraines or the alcoholics (and all other test subjects) a “placebo,” or something that looks like Tylenol, but is actually inert.  Then, you can compare your responses to see if Tylenol had any effect or not.

Above, I mention that after you formulate a hypothesis, you must test it.  You must test it by holding as many things constant as you can while only varying a specific aspect of the experiment, especially an aspect that you can control to some degree.  This brings us to the idea of “testability.”  In order for your experiment to be considered “Scientific,” it must be testable.  If it isn’t “testable,” then it doesn’t satisfy the “systematic” part of the definition.

Over time, enough experiments are done to warrant considering a certain concept to be a “Scientific Theory.”  That is to say, a Theory is an idea that is supported by an array of evidence and co-exists with other known Theories that are equally verified by experimentation.  Assuming a Theory stands the test of time, it eventually is considered to be a “Scientific Law,” meaning it represents something truly fundamental on which the rest of science and knowledge rests.  An example of a Theory is “The Theory of Natural Selection.”  An example of a Law is “Newton’s Laws of Thermodynamics.”  Wikipedia also has a nice list of other Scientific Laws.

Most Laws tend to be Physics/Chemistry-related, as these are the bedrock concepts upon which everything else stands.  You can’t really study Biology without fluid dynamics and quantum mechanics (well, you can ignore them for the most part, but they do get involved in certain situations).  Theories, on the other hand, are much less clear cut.  They tend to represent a constantly evolving field of research, where new data is being applied every day.  I will steal the US National Academy of Sciences definition to explain more fully:

Some scientific explanations are so well established that no new evidence is likely to alter them. The explanation becomes a scientific theory. In everyday language a theory means a hunch or speculation. Not so in science. In science, the word theory refers to a comprehensive explanation of an important feature of nature supported by facts gathered over time. Theories also allow scientists to make predictions about as yet unobserved phenomena.

A scientific theory is a well-substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment. Such fact-supported theories are not “guesses” but reliable accounts of the real world. The theory of biological evolution is more than “just a theory.” It is as factual an explanation of the universe as the atomic theory of matter or the germ theory of disease. Our understanding of gravity is still a work in progress. But the phenomenon of gravity, like evolution, is an accepted fact.

So in some ways, a Theory is treated on almost the same plane as a Law, but they really aren’t the same thing. A Theory can still be modified, while a Law is much, much harder to change.  In that first sentence, it says “no new evidence is likely to alter,” meaning you could still alter it, but it’s highly unlikely.

My overall concern with perceptions of what Science is stem from the various debates over climate change, evolution, stem cell research, etc.  In many ways, much of the political hubbub is regarding something that Science isn’t equipped to answer.  By definition, it can only give you a fact – it is up to the individual to decide how to apply their morals to that fact.  Science can tell you that Evolution is happening and that Natural Selection is the current Theory to describe how it happens.  It’s a “Theory” because more data is getting added every day, but the Theory is only strengthened, not weakened.  Overall, Natural Selection is what happens.  End of story.  Scientifically, embryonic stem cells come from an embryo, which is a collection of cells that does not fit the accepted definition of “alive” (i.e. self-awareness, self-preservation, consciousness).  Whether or not you agree that an embryo is not alive is up to you to decide, but arbitrarily suggesting that “Science says that it’s a life” is incorrect and a misuse of the term.  Saying that there are “gaps in the geological record,” so that must mean that God exists and God created the Earth in 6 days, ignores how Science works – God is, by nature, “untestable,” and therefore beyond the purview of Scientific understanding.  These are but a few of the examples of how some would misunderstand Science and try to apply it to things that it shouldn’t be applied to, or at least in ways it shouldn’t be applied.

The Study of Science is a systematic, logical progression that involves the formulation of a testable hypothesis, where testing involves experimentation, observation and collection of data to support or refute the hypothesis.  Hypotheses around a general subject can eventually add up to a Theory, and truly fundamental observations of the natural world become Law.  That’s all it is, folks.  No more.  No less.

Teaching Experience

About a month ago, the FUTURE in Biomedical Sciences group here at the University held a forum, of sorts, to help answer questions from graduate students and postdocs regarding what it takes to get a job at a Liberal Arts institution, especially in the State of Iowa (where these four individuals reside).  The FUTURE group, now in its second year, has multiple professors from Liberal Arts schools across the state (this year’s participants came from Loras College, Drake University, Morningside College and Wartburg College) come to Iowa City to do research for the summer, learning some new experimental techniques and generally expanding their horizons beyond what they can do at their respective institutions.  The forum was very informative, covering a variety of topics including how to write up your resume, what kinds of places to apply to, what to look for in a school, when to start looking for jobs, and what the jobs tend to be like.  More than anything, however, they all stressed the need for experience: the more experience you have on your application, the better chance you’ll stand against other applicants.  I’m not really looking for another job yet or anything, but it’s really good to have this information at the back of my mind as I keep building up that resume.  Hearing them talk about their jobs makes me want to get to that stage even more, providing me with some much needed motivation to get a few things done while I’m here!

Thankfully, I already have a leg up on that one.  Back at SLU, I had the good fortune of getting to teach in “Drugs We Use and Abuse,” a course run by the graduate students of the Pharm/Phys Department.  It is team-taught each Fall to around 50 non-majors (e.g. Business majors, History majors, etc.) and generally centers around…well…just what it sounds like.  If you ever wanted to learn what meth, cocaine, opiates, depressants and caffeine do to your body, then this is the class for you.  I taught in it for 3 years: I was a section director for 2 of those years and course director for 1 year.  The experience was very good, so much that I decided I want to do it full-time as a career: teach at the undergraduate level.

When I took the position here at the University of Iowa, I asked my mentor if it would be alright for me to continue teaching occasionally alongside the rest of the research I’m doing.  He was kind enough to allow it (if anything, he was excited that I’d take a few lectures off his hands).  This October, I’ll be teaching two classes of Advanced Toxicology, one talking about neurotransmission and the other talking about neurotoxic agents (e.g. cocaine, methamphetamine and ecstasy).  Both of these subjects are within my proverbial wheelhouse, so they shouldn’t take up all that much preparation time.  That, and I have the previous year’s lectures in a Powerpoint file to help me throw something together.  While Drugs We Use and Abuse was directed at non-major undergraduates, this class is for graduate students and there are only 12 in the class, so the dynamic will be quite a bit different than what I’m used to.

I will likely get the opportunity to teach in the Spring as well.  That course is in our department, Medicinal Chemistry and Natural Products, and is also targeted at graduate students (and will likely be just as small, if not smaller).  Not sure when we’ll get that going, but it probably won’t be until January, knowing how things go around here.

Either way, I think I’m doing a reasonably decent job at preparing for what’s ahead, with regards to that whole “career” thing.  At the very least, getting to add a few “guest lecturer” points on my CV is always a welcome addition.

And maybe I’ll even have a little fun doing it.  :-)

A Need for Expulsion

Mike has been Facebooking and blogging about the subjects surrounding the material in the Ben Stein documentary, “Expelled: No Intelligence Allowed.” Primarily, Mike got to thinking about it after reading an article by evolutionary theorist, Richard Dawkins, where he says that Stein distorted things Dawkins said in the documentary. Admittedly, Mike hasn’t actually seen the movie (as of this writing), and neither had I when I first read his post, but thanks to the wonders of Netflix Instant Queue, I took the time to watch it.

In his blog post, Mike argues that one of, if not the, primary issue in the debate is a lack of civility, where both sides (Creation vs Evolution) take things so personally that they cannot have a reasonable argument about the matter. I’ll leave that discussion to Mike, however, as my problem with the whole thing is a general ignorance of the definition of “science.”

science –noun

1. a branch of knowledge or study dealing with a body of facts or truths systematically arranged and showing the operation of general laws: the mathematical sciences.

2. systematic knowledge of the physical or material world gained through observation and experimentation.

Now, the key in that definition is “…gained through observation and experimentation.” I know I’ve talked about this before (stupid Lee Strobel…), but the definition of science is quite important to understanding what the problem is with the debate.

By the definition put forth above, Intelligent Design (and, relatedly, Creationism) is not science.  I can say this with conviction because I know that in order for it to be science, it must be testable.  If you cannot test a theory, then you cannot consider it science and it must stay firmly in the realm of philosophy.

philosophy –noun

1. the rational investigation of the truths and principles ofbeing, knowledge, or conduct.

5. a system of principles for guidance in practical affairs.

Philosophy is very good about providing analysis of an argument.  One could even describe them as “thought experiments,” where one ruminates on a particular moral or existential issue and comes to a conclusion.  However, those conclusions are hardly “evidence,” as they cannot be reproduced by other individuals performing the exact same experiment with the same parameters.  If one person has a “thought experiment,” their experiences in their own lives will inform their conclusions, leading to differences between individuals.  Science, on the other hand, holds specific variables consistent so that any individual can come to the same conclusion, irrefutably.  If I drop a ball in Iowa and you drop the same ball in Missouri, or China, they will both hit the ground in the same amount of time (assuming the ball is held the same way and the height it is dropped from held constant, but only the location of the experiment has changed).

This is, inherently, the issue: Evolution (in the form of Natural Selection) can be, and has been, tested in many, many different ways and it has held up to the toughest of scrutiny; Intelligent Design cannot be tested and, therefore, is not science.  Have all facets of evolution (in the form of Natural Selection) turned out to stand up to that scrutiny?  No, and the Theory of Evolution has been modified when that new evidence has appeared.  I can’t think of a time when Creationism/Intelligent Design has been modified when new evidence has been presented.

Creationists have been trying to get Creationism in public schools for decades, believing that Evolution is not only incorrect, but is somehow anti-Creation.  I’m not going to get into that part of the debate, although I have some pretty clear opinions on it.  I don’t even necessarily have a problem with teaching religion in public schools, as long as they’re all treated equally (i.e. you can teach Christian tenets as long as you also teach the ideas of Islam, Judaism, etc.).  But I do have serious problems with passing off Intelligent Design as science, and serious issues with the people that purport that Intelligent Design should be taught in public schools in science classrooms.

Whether my comments are “civil” or not, I don’t know (they probably aren’t…), but I do know that the proponents of teaching Intelligent Design in science classes are wrong and are doing a disservice to students everywhere.  Science is difficult enough to understand as it is, let alone adding things into the classroom that don’t belong there and simply confuse everyone involved.

Getting To Work

I started working here at the University of Iowa‘s College of Pharmacy on May 10th, so while I’m certainly not familiar with everything yet, I can at least report on some of the new research stuff, as well as the logistical experiences regarding the University of Iowa as a whole. I’ll probably post other tidbits of info about the new job over multiple posts, but for now, I’ll start at the proverbial beginning of the day.

First, let me start by pointing out that parking around the University is nothing short of ridiculous. There simply aren’t enough parking garages close to the buildings for people to park at, which is quite a change from what I’m used to at Truman State or at SLU. Thankfully, Iowa City has done a pretty good job with their Cambus system, which is a free (yes, I said “free”) commuter bus system for any resident of Iowa City or attendee of the University. There are various stops around town, so it actually gets used by a wide range of people. This is my first experience relying on a bus to get to work, however, so things have gotten “interesting” to say the least.

Secondly, let me point out that we live in Swisher, IA, which is a good 10 miles north on I-380 from Iowa City, let alone to the actual University itself. Therefore, due to the parking situation and the driving distance, I decided to start off by parking about halfway down to work at the Oakdale parking lot, a campus outside of town that has bus service, but also has free parking. This worked alright, however, the buses only seem to run every 45-60 minutes, so you really have to be there at a prescribed time, otherwise you’re waiting forever to catch another one. Also, my second day of work, the bus coming to pick us up was in an accident, meaning that the bus that replaced it ended up being an hour late. I ended up driving myself to work and finding a parking lot, which finally cost $15 for the full day of parking.

After that, I signed up for one of the commuter lots closer to campus, one that still has bus access, but the buses come to the lots more often. These lots, however, cost $20 to park in per month. There are two of these lots, both excessively far from campus, but the closer you get, the more expensive the lots become. The next “step up” would be $45/mo, and I’d still end up needing to ride the bus to get to my building. If I read the maps correctly, I’d end up paying $85/mo in order to park in a lot that’s anywhere near walking distance of my building, but it could take years before I’d be eligible to park there. So yeah, I’ve resigned myself to waiting on buses for the foreseeable future, but at least it means I get to listen to more podcasts and use my Nintendo DS more often.

In the afternoon, the bus schedule is also difficult to navigate, but I’m getting better about it. Effectively, for the ride home, I need to be at the stop for either the 4:59 bus or the 5:06 bus…but if I miss those, I have to wait until 5:36 for the next one. After I get on the bus, and get to the car, I still have the 30 min drive home from the parking lot. So yeah, on average, once you take traffic into account at the beginning and end of the day, I’m driving for close to an hour each way every day. That, and I’m staying at work longer than I used to (stoopid real jobs…).

Please keep in mind that this isn’t a complaint: it’s just a reality, and certainly an adjustment I’m having to make as compared to my experience(s) over the last 5-10 years. At Truman, I could either walk from the dorm, or ride my bike to class, taking no more than 5 minutes to get where I needed to go. In order to get to SLU every morning in grad school, I had a 10 minute drive (sometimes less). Going from 5-10 minutes to an hour of transit time is a big jump to make!

Believe you me, though, the amount of time I’m in the car every day makes me ready to have a new one… :-)

Fin

DSC_0073

Yesterday was a long time coming. 13 years of primary and secondary education, 5 years of undergraduate education, and 5 years of graduate education…and now I’m done: Ph.D. achieved.

Different graduate programs carry out their various processes in different ways, but the way ours works is that you complete a Preliminary Dissertation (e.g. “comps”) after 2 years in the program, then you carry out your research, write up a Dissertation, and then defend it. In the Pharmacological and Physiological Science Department at SLU, you have a “Private Defense” between you and your Committee, the individuals that have been evaluating you since the Prelim to determine when you’re ready to be done. The meeting was scheduled for 11:00 am and, while it started a little late, it only ended up lasting an hour. After completion of the Private Defense, we moved on to the “Public Defense.” This one was a separate presentation of, essentially, the “story” my Dissertation told. Anyone is allowed to attend this presentation and ask any questions they want, although typically, there aren’t that many questions asked. I had a few and answered them accordingly. After all this, the ballots allowing my graduation were signed by the Committee and I was then granted the Doctor of Philosophy.

After the Defense(s), we had a lovely reception in the main conference room of the department. Food was eaten, beers drunken(?), presents given, and memories remembered. All in all, it was a great experience. I’m certainly sorry to leave SLU, and I’ll miss all the friends I’ve made over the last 5 years. However, it’s time to move on to the next stage of life.

Now that I’m out of school, after 22 years, one could argue that I’m finally ready to join the “real world.”

And I get to join the real world as Andrew J. Linsenbardt, Ph.D. :-)